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For each non-negative integer n a function f=fn is constructed such that f has
a continuous and non-negative derivative f $ on I :=[&1, 1] and

1
200

<
E (1)

n+1( f )
En( f $)

<2,

where En( f $) (E (1)
n+1( f )) is the value of the best uniform approximation on I of the

function f $ ( f ) by arbitrary (monotone on I ) algebraic polynomials of degree �n
(n+1). � 1996 Academic Press, Inc.

Introduction

Let n be a non-negative integer and Pn the space of all algebraic polyno-
mials of degree at most n. For a function f, continuous on a closed interval
[a, b], set, as usual,

& f &[a, b] := max
x # [a, b]

| f (x)|,

and denote

& f & :=& f &[&1, 1] , En( f ) := inf
p # Pn

& f&p&, I :=[&1, 1].

If a function f is continuously differentiable on I, then it is well known
that

En+1( f )�
c

n+1
En( f $), (1)

where c is an absolute constant.
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Now, let 2(1) be the set of functions f that have continuous and non-
negative derivatives f $ on I, and

E (1)
n ( f ) := inf

p # Pn & 2 (1)
& f&p&.

D. Leviatan noted that Shisha's paper [1] contains a proof of the
inequality

E (1)
n+1( f )�2En( f $) (2)

for each function f # 2(1). Let us review it. Denote by Pn*(x, f $)=: Pn* # Pn

the polynomial of the best approximation of f $. Since f # 2(1), then
Pn*(x, f $)+En( f $)�0 for x # I. Let

Pn+1(x, f ) :=f (0)+xEn( f $)+|
x

0
Pn*(u, f $) du,

then, since Pn+1 # 2(1), we have

E (1)
n ( f )�& f&Pn+1 &�En( f $)+& f $&Pn*( } , f $)&=2En( f $).

Taking into account the works on monotone approximation of Lorentz,
DeVore, and many other authors, one may assume that the estimate (2)
can be strengthened, say, to the form (1), where En+1( f ) is replaced by
E (1)

n+1( f ). In fact, S. V. Koniagin and A. S. Shvedov asked the author this
question in 1989 in Lutsk, during the conference dedicated to Professor
V. K. Dzjadyk's 70th anniversary.

In this paper the following Theorem 1 will be proved which gives a
negative answer to this question. It turns out that the estimate (2) is exact
in order.

Theorem 1. For each non-negative integer n there is a function f=fn ,
which has a continuous and non-negative on [&1, 1] derivative f $, such that

1
200

<
E (1)

n+1( f )
En( f $)

<2. (3)

Everywhere below n>2 is a fixed positive integer.

1. A Few Simple Properties of Chebyshev Polynomials. Let us consider
Chebyshev polynomial of degree n

Tn(x) :=cos n arccos x, if |x|�1, (4)

Tn(x) := 1
2 ((x+- x2&1)n+(x&- x2&1)n), if |x|�1. (5)
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It follows from (5) that

|Tn(x)|< 1
2 (2 |x| )n, |x|>1. (6)

For an arbitrary polynomial Sn # Pn the following inequality (see [3,
1.2.9]) is well known:

|Sn(x)|�|Tn(x)|&Sn&, |x|>1. (7)

Hence, by taking (6) into account, we get

&Sn&[&3, 1]< 1
26n &Sn&,

and, in particular,

&Sn&< 1
26n &Sn &[0, 1] . (8)

Denote by

xk :=xk, n :=cos \n&k
n

?+
?
2n+ , k=1, n,

the zeroes of Chebyshev polynomial Tn . For k=1, n&1 set Ik :=
[xk , xk+1], |Ik | :=xk+1&xk . The formula of the area of a triangle gives

|
Ik

|Tn(u)| du> 1
2 |Ik |,

for all k=1, n&1; a more accurate calculation gives

|
Ik

|Tn(u)| du=
n

n2&1
ctg

?
2n

|Ik |>
2
?

|Ik |. (9)

Clearly,

|Ik |=|In&k |, |Ik |�|Ik+1 | (10)

for all k=1, [(n&1)�2], where [ } ] stands for the integer part.
We also put

Qn+1(x) :=|
x

&1
Tn(u) du (11)

and note that

&Qn+1&�
1

n&1
.
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2. Definition of a Function f. Let

b :=
1
14

; (12)

I* :=[&1, &1+2b]; Tn*(x) :=Tn \x+1&b
b + ; (13)

and let xk* :=&1+b+bxk denote zeroes of the polynomial Tn*(x);
Ik* :=[xk*, x*k+1].

Now, we define the function f by the formula

f (x) :=fn(x) :={
0, if x # [&1, xn*],

(14)
|

x

x n*
Tn*(u) du, if x # [xn*, 1].

Obviously,

f # 2(1). (15)

3. Beginning of the Proof of Theorem 1. First of all, note that

En( f $)�& f $&Tn*&=& f $&Tn*&[&1, xn*]=&Tn*&[&1, x n*]

�&Tn*&I*=&Tn&=1. (16)

Taking into account (2), (15), and (16), we only have to prove the
inequality

E (1)
n+1( f )> 1

200 .

For this purpose let us fix an arbitrary polynomial Pn+1 # Pn+1 such that

P$n+1(x)�0, (17)

for all x # I, and prove the estimate

& f&Pn+1&> 1
200 . (18)

Set

Q*n+1(x) :=|
x

&1
Tn*(u) du, Rn+1(x) :=Pn+1(x)&Q*n+1(x).
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Denote by m the number of all zeroes (counting their multiplicities) of
the polynomial R$n+1 , which lie in the interval (x1*, xn*) where ( stands for
( when n is even and for [ when n is odd. We shall write m=0 if R$n+1 has
no zeroes in (x1*, xn*). Clearly, m�n.

In the next sections we shall prove (18) for two cases, m<n�2 (including
m=0) and m�n�2.

4. Proof of the Estimate (18) in the Case m<n�2. As usual, for a finite
collection V of some elements we denote by card V the number of elements
in V.

We shall write k # W if n&k is even and 1�k�n&1, that is, if
Tn*(x)�0 for x # Ik* (or, which is the same, if Tn(x)�0 for x # Ik). Note
that card W=[(n&1)�2]. We shall write k # W0 , if k # W and the
polinomial R$n+1 has a zero on Ik*. Note that when k # W0 , the polynomial
R$n+1 must have an even number of zeros (counting their multiplicities)
on Ik*, because R$n+1>0 for x # (x*k&1 , xk*) _ (x*k+1 , x*k+2). Therefore
card W0�m�2, and

_n&1
2 &�l :=card(W "W0)�_n&1

2 &&
m
2

. (19)

It follows from (17) and our construction that, for x # Ik* with
k # W "W0 ,

P$n+1(x)>Tn*(x)�0. (20)

By applying (17), (20), and (13) we get

|
x n*

x 1
*

P$n+1(x) dx� :
k # W "W0

|
Ik*

P$n+1(x) dx

> :
k # W "W0

|
Ik*

Tn*(x) dx=b :
k # W "W0

|
Ik

Tn(x) dx

=b :
k # W "W0

|
I k

|Tn(x)| dx=: bA.

Now, taking into account that if k # W then (k\1) � W, and using (9),
(10), and (19), we find

A>
2
?

:
k # W "W0

|Ik |�
2
?

:
l

k=1

|Ik |=
2
?

(xl+1&x1).
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Finally, we write a chain of obvious relations,

& f&Pn+1&�& f&Pn+1&[x 1
*, x n*]=&Pn+1&[x 1

*, x n*]

�
1
2

(Pn+1(xn*)&Pn+1(x1*))

=
1
2 |

x n*

x 1
*

P$n+1(x) dx>
b
2

A

>
b
?

(xl+1&x1)

=
2b
?

sin
l+1
2n

? sin
l

2n
?.

Note that l�[(n+1)�4], and (when n{6) we obtain

& f&Pn+1&>
2b
?

sin
?
8

sin \_n+1
4 & ?

2n+�
2b
?

sin
?
8

sin
?
10

>
1

200
.

The estimate (18) is proved in the case m<n�2.

Remark. Then proof in the following section was derived by Professor
S. V. Koniagin. The author's original proof was more complicated as it
made use of V. A. Markov's inequality, whereas here we make use of
inequality (7).

5. Proof of the Estimate (18) in the Case m�n�2. Let ti , i=1, m, denote
those zeroes of the polynomial R$n+1 which lie in the interval (x1*, xn*), and
let Sn&m be the polynomial Sn&m # Pn&m which, for x{ti , is defined by the
formula

Sn&m(x) :=
R$n+1(x)

6(x)
,

where

6(x) := `
m

i=1

(x&ti ).

Also, by a :=&1+b+b cos(?�n) we denote the right-hand minimum of
the polynomial Tn*. Since Tn*(a)=&1, P$n+1(a)�0, then

Sn&m(a)�6&1(a)
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and, therefore, by (8)

&Sn&m&[0, 1]>2 } 6m&n &Sn&m&�2 } 6m&n6 &1(a).

Now,

6(0)
6(a)

>(a+1)&m>7m, &R$n+1&[0, 1]�6(0)&Sn&m&[0, 1] ,

and hence

&R$n+1&�&R$n+1&[0, 1]�6(0)&Sn&m&[0, 1] ,

�6m&n26(0) 6&1(a)�6m&n7m2�2(7�6)n�2. (21)

Now let us make use of A. A. Markov's inequality

&Rn+1&�
1

(n+1)2 &R$n+1& (22)

and of arguments used by G. G. Lorentz and K. L. Zeller [2] and A. S.
Shvedov [4].

Obviously,

& f&Q*n+1&=& f&Q*n+1&[&1, x n*]=&Q*n+1 &[&1, x n*]

=b &Qn+1&[&1, xn]�b &Qn+1&,

and (11) yields

& f&Q*n+1 &�
b

n&1
. (23)

Finally, the estimates (21)�(23) and (12) imply

& f&Pn+1&�&Rn+1&&& f&Q*n+1&�
1

(n+1)2 &R$n+1 &&
b

n&1

�
2(7�6)n�2

(n+1)2 &
1

14(n&1)
>

1
200

,

which completes the proof of the inequality (18) in the case m�n�2.

Theorem 1 is proved.

Remark. One can easily verify the cases n=0, 1, 2 of Theorem 1. Also,
we mention that we can double the constant 1�200 in (3), but for this
purpose we would need to double the volume of the article.
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